

Level 1 Pixel Trigger Data Flow Analysis

BTeV-doc-1177, version 1
19 September 2002

Gustavo Cancelo for the BTeV Trigger Group

Table of Contents
1 Some System definitions .. 1

1.1 Introduction .. 1
1.2 The Pixel Detector structure ... 1
1.3 The Input data file: ... 2

1.3.1 Some file statistics ... 2
1.3.2 Front-end bandwidth.. 3

1.4 Pixel Preprocessor and Segment Tracker ... 3
1.5 The Pixel Front end .. 4

2 Data flow analysis in the Pixel Preprocessor and Segment Tracker... 5
2.1 The Pixel Preprocessor Architecture .. 5
2.2 The Pixel Preprocessor queuing analysis and simulation ... 6

2.2.2 The TS-ordering queues .. 8
2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues 11

2.3 The Segment Tracker Architecture... 17
2.4 Analysis and simulations of the BB33 dataflow... 18

2.4.1 Analysis of the BB33 queues as events from the buffer manager ... 18
2.4.2 Analysis of the BB33 queues as a “bulk” service process... 20
2.4.3 Latency and Processing Times .. 23

2.5 Data Bandwidth Analysis ... 24
2.6 Data Throttling ... 26

2.6.1 Instantaneous data rate... 27
2.6.2 Data Throttling .. 27
2.6.3 Data Throttling in the Pixel Preprocessor.. 27
2.6.4 Data Throttling in the Segment Tracker .. 28
2.6.5 Data Throttling in the Processor Farmlet... 28

3 Conclusions ... 28

Disclaimer:

This document is still in preliminary stage. Some sections are incomplete or
need more work. Many calculations and simulation results depend on input
calculations, which are also preliminary. Use with care.

PRELIMINARY 09/24/02
__

G.C 1

Pixel Trigger Queuing Analysis and Behavioral Simulations

1 Some System definitions

1.1 Introduction

The following document summarizes the results obtained by modeling and simulating part of the Level 1
Pixel Trigger Processor for BTeV. The portion modeled and simulated corresponds to the Trigger section
that process data from a Pixel Detector Triplet. A Pixel Detector Triplet is depicted in Figure 2.

The Level 1 Pixel Trigger architecture has been described elsewhere [ref]. In the current analysis it is
assumed that the Level 1 Pixel Trigger Processor is subdivided in a number of parallel branches called
highways (see Figure 3). The mapping of the Pixel data onto the highways is based on the data’s Time Stamp
(TS). For instance, if the number of highways is N, highway1 will receive data with Time Stamps
1,N+1,2N+1,…, highway2 will receive 2,N+2,2N+2,… and so forth. It is assumed that data acquired at any
TS is uncorrelated with other TS, hence can be processed independently.

1.2 The Pixel Detector structure

The data flow analysis and simulations make extensive use of Pixel Simulation Files. These files are Geant
simulations of the BTeV detector [ref Penny]. The particular files used for the Trigger data flow simulations
provide information of 3 complete Pixel Stations (N°: 15, 16, and 17). The stations are laid out as shown in
Figure 1.

Figure 1 Pixel Detector Triplet

A Pixel Station is composed of two Half Pixel Stations. Each Half Station has one half of a bend view
detector side and one half of a non-bend view detector side mounted on the same mechanical substrate. They
make a Pixel Half Station. This two half detector planes, the bend and the non bend views, are at about
0.57cm apart. The other Half Station that completes the Station is shifted about 2.25cm in Z. For instance, the
right side Half Station 15 is centered in Z between the left side Half Stations 15 and 16, and so forth. Right
and left halves of the Pixel Stations keep its separation through the Pixel Preprocessor and Segment Tracker
modules of the L1 Pixel Trigger Processor as detailed below.

X

Y Z

Station 15

Station 16

Station 17

Station 15

Station 16

Station 17

Bend view

Nonbend view

12 half Pixel
planes at 12
different Z
locations.

PRELIMINARY 09/24/02
__

G.C 2

1.3 The Input data file:
The Pixel data was generated using the following parameters [ref]:
• Pixel size: 50 x 400 microns,
• Chip size: 22 columns, 128 rows
• Magnetic field: 1.6T
• Threshold: 2000 e-
• Total N° of Bunch Crossings (BCO): 745 and 4410
• Luminosity: 2* scm 123210 −− (4 interactions per BCO on average)
• No of stations simulated: 3, corresponding to the central Triplet of the Pixel Detector (i.e. stations 15, 16,

and 17). Each Station is double-sided with one bend-view plane and one non-bend-view plane.

1.3.1 Some file statistics
Two files were used to look at the L1 Trigger data flow. They were both generated using the same
parameters but the first file has 745 BCOs and the second one has 4410. The Table below summarizes and
compares some of their characteristics.

Number of simulated BCOs 745 4410
Total N° of Hits (6 planes): 260,855 1,549,192
Avg. No of tracks per BCO (1 plane): 25.14 24.84
Avg. No hits per BCO (1 plane): 58.35 58.60
Avg. No of hits generated by a track crossing a single sided plane: 2.32 2.35

Figure 2 shows the hit distribution in one Half Plane.

Figure 2 Pixel hit distribution in one Half Plane

The Pixel Preprocessor and Segment Tracker process pixel data coming from a Half Station. The Pixel Data
goes from the Pixel Detector planes through the Data Combiner boards and into the L1 Trigger. The Pixel
Detector Data Combiners split the data into a number of highways. As a consequence, the average data rate
into the L1 Trigger Pixel Preprocessor equals the total average data rate of a Half Pixel plane divided by the
number of Highways in the system. In the following example we consider that the Pixel Front-ends will spit
the data into 8 highways. The Pixel Preprocessors process one Highway from one Half Plane. The Segment
Trackers process 6 data streams, one from each Half Pixel plane which make a Half Station Triplet (as shown
in Figure 3). The purpose of a Segment Tracker is to find Inner and Outer Triplets of Pixel hits in 3
consecutive Pixel Detector Stations (actually, Half Stations for the current analysyis).

Mean~30

PRELIMINARY 09/24/02
__

G.C 3

Figure 3 Pixel Front End Highways

1.3.2 Front-end bandwidth

The bandwidths are calculated using Half Planes and Half Stations as units. Based on the current file, the
Half Pixel Plane generates an average of about 30 hits per BCO. If a pixel hit is represented by a 4 byte
binary word, the total bandwidth per Half Plane is very close to 1Gbyte/s or 8Gb/s.

Since the Pixel Data Combiner boards split the data in 8 highways, the Pixel Preprocessor and Segment
Trackers receive 6 x 1Gb/s links from the 6 Half Planes which form a Half Station Triplet.

1.4 Pixel Preprocessor and Segment Tracker

The Pixel Preprocessor and Segment Tracker have a functional block diagram as shown in Figure 4. A
Segment Tracker process the data from a Triplet of two-sided Pixel Half-Stations. A Pixel Preprocessor
module process a single-sided Pixel Half Plane (i.e. the bend view or the non bend view). The block diagram
in Figure 4 shows 6 Pixel Preprocessor modules and 1 Segment Tracker. Even if the hardware can
accommodate 6 Pixel Preprocessors and 1 Segment Tracker it still needs to send Pixel Preprocessor data to
the neighboring Segment Tracker processors because there are up to 3 Segment Tracker processors using the
same Pixel Preprocessor data. The function of the Segment Preprocessor Interconnection is to distribute the
data to up to three Segment Tracker stations. Note that data flow and module interconnection links do not
necessarily imply a one to one physical link.

Pixel Data
Combiner

(8 highways)

Segment
Tracker

Only 1 highway, ~1Gb/s

Only 1 highway, ~1Gb/s

7 highways from each Data
Combiner going to other Pixel
Preprocessors and *Segment
Trackers

Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)
Pixel Data
Combiner

(8 highways)

Only 1 highway, ~1Gb/s
Only 1 highway, ~1Gb/s

Only 1 highway, ~1Gb/s
Only 1 highway, ~1Gb/s

Pixel Front End

Pixel Detector

Pixel Preprocessor

Pixel Preprocessor
Pixel Preprocessor
Pixel Preprocessor
Pixel Preprocessor
Pixel Preprocessor

PRELIMINARY 09/24/02
__

G.C 4

Figure 4 Pixel Preprocessor and Segment Tracker functional block diagram

1.5 The Pixel Front end

The purpose of the current document is to report on the data flow in the Pixel Preprocessor and Segment
Tracker of L1 Pixel Trigger. However, some modeling and simulation of the Pixel Front End was necessary
to obtain realistic input data to the L1 Pixel Trigger. The Pixel simulation files provide a set of
chronologically organized events. A typical line of those files is:

BCO Plane No bend/nonbend Xcoord Ycoord Zcoord No pix hit

However, the data does not arrive chronologically sorted to the Pixel Trigger. The process of data readout in
the FPIX chips of the Pixel Detector and the process of data readout and highway sorting in the Pixel Data
Concentrator boards scramble the data.

A more realistic input data stream to the Pixel Trigger is needed in order to have better estimations of timing,
bandwidths, and queue sizes.

From Pixel Front-end (Fibers most likely)

Pixel
Preprocessor
& Segment

Tracker

Time Stamp expansion.

Event ordered by Time Stamp

Level 1 buffers

Pixel cluster finder & x-y
coordinates translator

Control &
Monitor
Interface

Data branches
out to neighbor

Segment
Trackers

Segment Tracker (BB33)

Makes segments using pixel data
from stations n-1, n, n+1

To Track & Vertex farm switch

Time Stamp expansion.

Event ordered by Time Stamp

Level 1 buffers

Pixel cluster finder & x-y
coordinate translator

PTSM
(Control &
Monitor)
Interface

Optical Receiver module.
Half Plane Pixel
Processor & L1
buffer (HP N)

Segment
Preprocessor

Interconnection

Segment
Preprocessor

Interconnection

to/from
station n-1

Data branches
out to neighbor

Segment
Trackers

NOTE: Functional
modules and
dataflow only shown
for 1 Half Plane of
the PP&ST. The
other 5 HP are alike.

to/from
station n+1

PRELIMINARY 09/24/02
__

G.C 5

The model used for the Pixel Front End is detailed in the Appendix. The Pixel Detector model considers the
fact that the hit density in the FPIX chips is not uniformly distributed across the Pixel Plane. The hit
distribution follows an inverse relation of the radial distance to the beam. As a consequence a FPIX chip
closer to the beam needs more serial communication channels to the Pixel Data Concentrators.

The Pixel Data Concentrator model includes a two-layer switch to route the data from about 84 inputs to 8
output highways.

2 Data flow analysis in the Pixel Preprocessor and Segment Tracker

The purpose of the data flow analysis in the L1 Trigger is to estimate the processing and storage
requirements, to create a timing and queuing map and to optimize hardware resources. The tools used in the
data flow analysis are two: queuing theory and behavioral simulations. The validity of the results depends on
the assumptions made in the modeling and the limitations of the input files used during simulation runs.
Some safety margins will be used in the design to account for all the unmodeled dynamics.

2.1 The Pixel Preprocessor Architecture

The Trigger Processor system must provide one trigger accept/reject per BCO, on average. This is achieved
by deeply pipelining the event processing. In order to optimize the throughput a number of buffers (queues)
are needed. The buffers smooth out data rate fluctuations and diminish processor’s idle times. An
advantageous feature of the Trigger Processor System is that the data events are independent (i.e.
uncorrelated) BCO wise. This characteristic facilitates the pipelining of the Trigger Processor by introducing
many processing units, which are allowed to work, asynchronously, on uncorrelated events. Using queues
between each two of those parallel processors allows pipelining by decoupling among data flows between
processors. Figure 5 shows the proposed queuing model of the Pixel Preprocessor.

The first queue in the Pixel Preprocessor is generated by Input Link Receivers. The serial input data from the
optical links are unserialized and placed in the Input Link buffers.

The Time Stamp (TS) field of the input data is expanded to the full length needed to match the maximum
trigger latency. Latency here is defined as the time it takes the Trigger System to make a decision on weather
to accept or reject an event. The Segment Tracker and the Level 1 Buffers need the data sorted by TS. Since
the data from the Pixel Detector Front Ends come TS unsorted, they are sorted by the TS-ordering module.
The TS-ordering module transfers the input data from the Input Link Buffers to separate queues where the
data is ordered by TS. The TS ordering queues are the second set of queues in the Pixel Preprocessor. The
number of open queues varies according to the TS distribution in the data stream.

The time each TS-ordering queue is open to receive data must be set deterministically based on data
distribution analysis. Since the input data is chronollogically unsorted and the event size is variable, the end-
of-event time is unknown. We could wait a “long time” and still not be sure that an event corresponding to a
certain TS is complete. Hence, the most logical approach is to make the departure time from the TS Ordering
queues deterministic with respect to its arrival time. The time every data queue must be kept open for
queuing (i.e. buffering input data of a certain TS) will affect the latency of the Trigger.

The thrird queue in the Pixel Preprocessor model (Figure 5) is the input to the Pixel cluster finder and x-y
coordinate translator (XYPC). This module reads data from an input buffer and writes grouped pixel clusters
into an output buffer. The input Pixel data is in row column form, that means the hits are represented by the
physical row and column address of the Pixel Detector chip which detected those hits. A single track may
generate more than one hit in the detector chip. The XYPC processor translate a whole group of row column
hits in a single x-y pair, where x and y are in metric units with respect to the origin of the coordinate system.
The XYPC reduces the event size by a factor proportional to the average pixel cluster size.

The fourth queue level (Figure 5) is the XYPC output buffer. It holds the x-y cluster data until is ready to be
processed by the Segment Tracker. The Segment Tracker needs x-y cluster data from the two neighbor
stations. The three queues generated by stations N-1, N, and N+1 are independent and work asynchronously.

PRELIMINARY 09/24/02
__

G.C 6

Figure 5 Queuing model for data flow analysis

2.2 The Pixel Preprocessor queuing analysis and simulation

2.2.1 The Input Link Buffer

The Input Link Buffer queue is fed by the Optical Receiver electronics. The expected maximum input
bandwidth of the optical channel is 2 Gb/s. This is equivalent to 250Mby/s or 125 Mega-16bit words/s, which
is close to the maximum frequency that an FPGA can handle. However, the analysis of the Input simulation
file shows that the average bandwidth is about 1Gb/s Figure 3.

The processing time on the Input Link Buffer data is deterministic. The algorithm will do the following:
• Add an expansion field for the data TS.
• Create an output queue (unless it already exists) and place the data onto that queue based on the data’s

TS.

Algorithm:
if queue with data’s TS already exist
 enqueue data in existing queue with its TS expanded
else
 enqueue data in a new queue with its TS expanded
end

Since the processing time is deterministic, the mean Input Link Buffer output rate, µ, is constant and its
variance is 0. If µ is greater that the maximum input bandwidth of the optical channel (62.5 Mw/s), the Input
Link Buffer size needed is just 1 word deep. Note that µ must be, at least, greater than the average input
bandwidth of the optical channel λ to avoid queue instability. The value of λ is directly proportional

Front-end data

…

x-y Translator and Grouping Buffer (Bulk)

Segment Tracker

Segment Tracker Output

Optical Link Input Buffer (M/M/1)

TS Ordering Buffer (M/D/∞)

 Half Station
N+1

 HS N Half Station N-1

PRELIMINARY 09/24/02
__

G.C 7

to the clock frequency of the input receiver and the Input Link Buffer’s utilization factor. In the later case,
the Input Link Buffer behaves as a M/D/1 queue. The average queue size can be calculated by

() () µ
λρ

ρ
ρ

ρ
ρ

=
−

−
−

= whereNE q 121

2

For the current simulation the input is distributed as shown in Figure 6.

Figure 6 Pixel Hit arrival distribution in the receiver’s queue

The arrivals at the receiver queue are exponentially distributed with λ=0.26 hits/clock and the service time
is µ=0.5 hits/clock. Hence,

0.53
5.0

26.0 ===
µ
λρ

The mean queue size becomes, () 82.0=NE q .
The simulations show that the Input Link Buffer queue does not exceed 1 word deep.

Figure 7 Receiver queue size

PRELIMINARY 09/24/02
__

2.2.2 The TS-ordering queues

During the TS-ordering process queues are born and also die. A new queue is born when the TS event
ordering process receives data with a TS different to all the ones in the existing queues. A queue dies when
the data reception for that event is complete. As said above this time must be chosen deterministically. For
the current example this time will be equal to a complete revolution of the TS clock, that is ~21µs if we roll
over the TS counter at 159 BCOs, or 33.8µs if we roll over at 256 BCOs. This number is, probably, too
conservative and adds an unnecessary latency to the data flow. However, it represents a worst case bound.
The simulations show data inefficiency in the TS-ordering queue as function of the lifetime of the TS queue
as it is shown below.

The full queueing analysis of the TS event ordering is fairly complex because the process must not only
consider the queue birth-death distribution but, also, the size distribution of each individual queue. At least,
we want to find the first moments of a probability distribution function, which defines the existence of each
specific queue and its size. If we look at individual queues this is a non-stationary problem. However, some
simplifications can be made. We can define a new process looking only at the number of queues in the TS
event ordering system, regardless of their sizes. This new process is a well-defined birth-death Markov
chain. Each state represents the number of existing queues in the system (Figure 8). The process can be
modeled as a M/D/∞ process. The birth time of the queues are generated by random queue arrivals. The
interarrival times can be considered exponentially distributed. Queue deaths are caused by complete events
leaving the system. The interdeparture times are deterministic.

Figure 8 TS-ordering state transition model

When the TS ordering process receives data with a new TS, it opens a new queue immediately. That is, it
starts processing the incoming event without queueing it. The response time of the server increases linearly.
We can define:
λ: queue birth rate
µk = kµ : queue death rate

λ represents the rate at which new queues are generated. From simulations the total Pixel Detector Half
Station data rate is shown to be 0.9 events/BCO for 4int/BCO and 0.71 events/BCO for 2int/BCO. This rate
is reduced by the fact that the events are separated along K parallel highways based on TS. Considering
K=8 and that all TS are equally probable, the data rate in each branch (which is the interesting number
here) is:

λ=0.1125 events/BCO.
In other words, the interarrival time Tλ (i.e the average time between two new queue arrivals) is:

Tλ = 1/λ = 8.88 BCOs for a luminosity of 4int/BCO.

µ, the service rate, is deterministic and equal to the time we want to wait before considering that the event
is complete. In this example we set µ to 1/(159 BCOs) or 0.006289 BCO¯¹.
The M/D/∞ process is always stable. The probability distribution function of this system is given by

,...2,1,0
!

)(
== − kek

p
k

k
µλµλ

The average number of queues in the system is given by:

S0 S1 S2 . . .

λ λ λ

µ 2µ 3µ

PRELIMINARY 09/24/02
__

G.C 9

() queuesNE q 89.17
006289.0

1125.0 ===
µ
λ

The average response time of the system to a job, using Little’s formula, is
()

BCOs
NE

T q 1591 ===
µλ

,

which is obvious because the system’s service time is deterministic.

The simulations of 750 and 4410 BCOs show similar results (Figure 9). The number of TS queues open
increases linearly at the beginning and stabilizes at around 18 queues. If we discard the transitory (the first
200 BCOs) the average number of queues from simulation is 18.25 and 18.13 respectively.

Figure 9 Simulation of the Number of TS queues. (9.a. 750 BCOs. 9.b. 4100 BCOs)

Before modeling the individual queues some data bounds can be calculated using the same system model.
If we take into account the average number of queues and the average event size we can expect an Avg.
Number of data words in all the queues of about:
Avg. N data = E(Nq) * Avg. event size = 17.89queues * 30 hits = 536 hits.
This number is too pessimistic because if we take the averages as deterministic parameters (i.e. the system
has always 18 queues open and the event size is constant at 30hits/event) it implies that all the queues are at
maximum data capacity. The dynamics of the process tell us that this is not true and the total number of
words in the queues must be smaller than that.

The analysis of the individual queues can be performed as follow: We can calculate the conditional
probability distribution function of queue occupancies given that there are n queues and the total sum of
data words in the queues is m. The selection of data in the queues can be modeled as a generalized
binomial distribution:

() ppp
mmm

mnqNmtMmtMmtMmtMP mmm

n
nn n

111
21

2211 ...
!!...!

!)(,)(|)(,...,)(,)(21======

where: 1
1

=∑
=

n

i
ip and mm

n

i
i =∑

=1

Since the input data-stream which generates the queues with individual TS is a Poisson process,

()
!
)()(

m
t

emtMP
m

t λλ−==

Then, we can take away the conditionality on the total number of words m

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25
number of TS queues

BCO

N
o

w
or

ds

PRELIMINARY 09/24/02
__

G.C 10

()
!
)(

....
!!...!

!)(|,)(,...,)(,)(111
21

2211 21

m
t

eppp
mmm

mnqNmtMmtMmtMP
m

tmmm

n
nn n

λλ−=====

the last equation can be written as

() ∏
=

−=====
n

i i

itp
nn

m

tp m
enqNmtMmtMmtMP

i

i

1
2211 !

)(
)(|,)(,...,)(,)(

λλ (1)

since all the TS are equally probable nppp n /1...21 ====

() ∏
=

−=====
n

i i

nt
nn

m
nt m

enqNmtMmtMmtMP
i

1

)/(
2211 !

)/(
)(|,)(,...,)(,)(

λλ (2)

Equation (2) is still conditioned by a fixed number of queues in the system. However, it let us study the
distribution of data in the queues for a certain number of key values. For instance we can let n be the
average number of queues or some upper bound.

What equation (2) shows is that for a given n the distribution of M1(t)…Mn(t) are independent Poisson
processes with data rate λt/n. It is also known that as well as the interarrival times in a Poisson Process are
exponentially distributed, the k-iterated interarrival of an event in (1) follows a k-stage Earlang distribution.
In our case the distribution is conditioned for n fixed.

We can further simplify the job if we are only interested in the average total number of words in all the TS-
ordering queues. The average number of hits in the TS-ordering queues can be calculated using the average
number of TS-queues and the average number of hits per event.

()
µ
λρ

ρ
ρ

=
−

= whereNE q 1

241124.0__ == rateinputhitλ

242587.0
/14__min

==

BCOclkxtimequeuingisticDeter
queuesorderingNoTSAvgµ

993966.0=ρ

() hitsNE q 165
1

=
−

=
ρ

ρ

PRELIMINARY 09/24/02
__

G.C 11

The simulations of about 750 and 4410 BCOs show an average number of words of 202.8 and 243.03,
respectively, passed the initial transitory. Clearly the average number of words has not reached full steady
state after 750 BCOs

Figure 10 Simulation of the Number of words in the TS queues. (10.a. 750 BCOs. 10.b. 4100 BCOs)

2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues

As said, the TS-ordering process opens one individual queue for each TS in the data stream. These queues
are opened for data collection during a deterministic time. When that time is over, the queue is closed and
loaded into the XYPC input queue for data grouping. All data having a TS field corresponding to a queue
that is closed is lost and contributes to inefficiency in the Trigger. This problem can be solved by increasing
the time the queues are open for data collection, but that, of course, increases the latency of the Trigger. In
other words, it increases the time an event in the entire BTeV detector must be stored waiting for a trigger
accept or reject.

The TS scrambling in the data stream is generated by the scattered and asynchronous way in which Pixel
data is collected and routed to the Trigger system. The analysis of the Pixel Detector’s readout is outside
the scope of this document. However, we here present a crude simulation to illustrate the problem. In order
to study the Triger’s Pixel Preprocessor we have generated a simplified model of the Pixel Detector and
Data Concentrator’s readout. A detailed model can be found in the Apendix.

Figure 11a and b shows the distribution of TS spread (i.e. the distribution of times between the first and the
last event word with a certain TS).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

200

250

300

350
number of words in the TS queues

BCO

N
o

wo
rd

s

PRELIMINARY 09/24/02
__

G.C 12

Figure 11 Distribution of TS spread in the data

Figure 12 a and b show the data inefficiency as a function of the time the TS-ordering queues are open for
data collection. The distributions in Figure 11 a and b correspond to “highwayed” data from 2 of the 6
planes that feed a Segment Tracker Triplet. It can be noticed that even when the amount of data generated
for each plane is similar, the distributions are quite different and the minimum time required for data
collection in the TS-ordering queues varies a lot.

Figure 12 Inefficiency in the TS-ordering queues

2.2.3 The x-y pixel cluster (XYPC) queue

The x-y pixel cluster (XYPC) queue can be modeled as a “bulk” M/M/1 process. In such a process the data
arrives at the input queue in “bulks”. The x-y translator buffer receives “bulk” arrivals from the output of
the TS ordering process. Every time the TS ordering process closes a queue, that entire queue is placed in
the x-y translator buffer. This queue is of variable size and equal to the size of the event that generates it. In
other words, the x-y translator’s queue is composed by a number of queued customers, which are in turn of
variable length. This problem is a generalization of the system with an r-stage Earlangian service, in this
case using variable r. The bulk arrival state-transition diagram can be represented as in Figure 13.

PRELIMINARY 09/24/02
__

G.C 13

Figure 13 XYPC state transition model

A good idea of the bulk size distribution g is given by the event size histogram provided by the simulations
(Figure 2).

Let gi = Prob[bulk size is i], then 1
1

=∑∞
=i ig

The equilibrium equations for the bulk arrival system are:

1)(
1

1
1 >+=+ ∑

−

=
−+ kgppp

k

i
ikikk λµµλ (1)

pp 10 µλ =

The numbers we are looking for are the size of the x-y translator queue and the average service time. The
solution of the equilibrium equations involves z-transform methods. The bulk M/M/1 queue size in
equilibrium suffers a “modulation” effect caused by the changing size of the events (bulks). This
modulation is reflected in the discrete convolution shown in equation (1). As we know, discrete
convolutions are much easily handled in the z-transformed plane because they turn into the product of the
z-transforms. The z-transform of the probability distribution is

)](1[)1(
)1)(1(

)(
zGzz

zzP
−−−
−−

=
λµ
ρµ

 (2)

Here P(z) represents the z-transform of the probability distribution of the x-y transform queue size and G(z)
is the z-transform of the probability distribution of the bulk size. The utilization factor ρ is defined, as
usually, ρ=1-po. The value of ρ can, also, be obtained from (2) taking into account that P(1)=1.

Then,
µ

λρ)1('G= . This result is not surprising because)1('G is the average bulk size, hence)1('Gλ is the

average arrival rate and 1/µ is the average service rate.

The average queue size can be directly calculated from (2) using the method of moments.

dz
zdPNE

z

)()(
1=

=

After some algebra, ())1(2
)1()1(2

)(
G

GGNE
′−

′′+′
=

λµ
λλ

. Of course, this equation depends on the gk distribution.

If we assume that gk follows a Poisson distribution then
ezG z α)1()(−= , where α is the spread in the event size distribution.

ezG z αα)1()(−=′

ezG z αα)1(2)(−=′′

Then expected number of queues in the bulk M/M/1 process is

k-2 k-1 k

λg1

µ µ µµ

k+1 k+2

µ µ

λg2

λgi.
.

.

.
λgi

λg2

λg1

.

.
.
.

.

PRELIMINARY 09/24/02
__

G.C 14

()λαµ
αλλα

−
+=

2
2)(

2
NE . It can also be expressed in terms of ρ, ()ρ

ραρ
−
+

=
12

2
)(NE

using λ=0.0083, µ=0.1072, α=25, E(N)=0.103

In fact, as it can be appreciated in Figure 2, the hit distribution is not Poisson. We can approach it much
better using a Rayleigh or a Landau distribution.

The Rayleigh distribution can be expressed as:

Figure 14 Rayleigh distribution

e
x

X
xxf σ

σ
2

2

2
2

)(
−

=

The Rayleigh distribution is a continuous pdf. Its Fourier transform can be calculated as

∫∫
∞

∞−

∞

∞−

−−− == dxe
xdxexfwF jwx

x
jwx e σ

σ
2

2

2
2

)()(

after solving this we get

e
w

jwwF 2

22

2
)(

σπσ
−

=

and its counterpart z-transform is (using e jwz =):

zzzG 2

2

)ln(
2

)(
σπσ

−
=

the n-iterated derivatives of G(z) are:

−=′

+−)ln(

2
1

2
)(

2
1

2

2

zzG z σσπσ

−

−

+−=′′

+−

2
)ln(

2
11

2
)1(

2
)(

222
2

2

2

σσσσπσ zzG z

PRELIMINARY 09/24/02
__

G.C 15

The z-transform derivatives calculated at z=1 are

2
)1(πσ=′G

()σπσ 21
2

)1(+−=′′G

Then expected number of queues in the bulk M/M/1 process is

()

+

+−
=

2
2

1
22

2
)(

2

πλσµ

σµ
λσπ

µ
λσπ

NE

Using
µ

λρ)1('G= , equation (4) can be written as

() ()
()ρ
σρ

−
−

=
12

12
NE

The Raileygh distribution fits much better the data distribution of Figure 9. The parameter σ can be
calculated using Maximum Likelihood Estimation (MLE) over the data sample. MLE estimation is
straightforward using Matlab. Table 1shows the MLE values of σ and the mean queue size for the 6 Half
Pixel Planes in the current example,

Table 1

Half Pixel Plane σ̂ Mean XYPC input
queue size E(N)

N-1 bend 31.15 4.02
N-1 non bend 21.64 1.94
N bend 31.74 4.18
N non bend 23.50 2.29
N+1 bend 31.87 4.21
N+1 non bend 21.97 2.0

A 4410 BCO simulation shows that the XYPC queue is empty half of the time and peeks suddenly every
time a bulk fills it up. Since the bulk interdeparture time is fairly smaller than the bulk interarrival time, the
queue shows to return to 0 most of the time. The BB33 input queue shows a similar behavior. Figures 15
and 16 show the simulation of the XYPC and BB33 input queues for plane N-1 non bend. The mean size of
the XYPC input queue is E(N)= 4.32. The mean size of the BB33 input queue is E(N)=2.83

PRELIMINARY 09/24/02
__

G.C 16

Figure 15 XYPC queue size

Figure 16 BB33 Input queue size

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60
x-y queue size

BCO

N
o

w
or

ds

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80
BB33 queue size

BCO

N
o

w
or

ds

PRELIMINARY 09/24/02
__

G.C 17

2.3 The Segment Tracker Architecture

As said in section 1.3.1, the Segment Tracker finds 3-station long inner and outer triplets. The current
analysis is based on the proposed BB33 algorithm. A detailed description of the BB33 can be found in
[Ref1] [Ref2]. The Segment Tracker receives input from 6 Half Planes corresponding to the bend and non-
bend views of three consecutive stations in the Pixel Detector. There is a queue associated to each input to
store the incoming data. We have, also, defined other 7 internal queues for temporary data storage, which
allows pipelining through the processing modules.

Figure 17: The Segment Tracker Architecture

Each of the first five modules in the BB33 algorithm process entire events of data coming from two
sources. Here, we associate the word event with all the data generated by a particular section of the Pixel
Detector (i.e one Half Plane) during one BCO time. As shown in Figure 17, the pixel hits preprocessed by
the Pixel Preprocessor accumulate in the input queues of the BB33 processing modules. An event is
processed when the buffer manager of a processing module detects that one event in each of the two input
queues are complete. The buffer manager of each processing module synchronizes the data streams. The
buffer managers are not explicitly shown in the block diagram above but are the first function in each

Long
doublets

Triplets

N+1 Short
doublets

N Short
doublets

N-1 Short
doublets

MUX

Station N
Bend

Station N-1
Bend

Station N+1
Bend Long doublet

projections

Triplets
projection Station N-1

nonbend Station N
nonbend Triplets

projection

Station N+1
nonbend

Triplets
projection

Short doublet
outputs

BB33 outputs

PRELIMINARY 09/24/02
__

G.C 18

processing module. Each processing module produces pixel doublets and projections as results, which are
used as input for the next processing module.

2.4 Analysis and simulations of the BB33 dataflow

2.4.1 Analysis of the BB33 queues as events in the buffer manager

The data flow of the BB33 algorithm can be analyzed in several ways. We can start with the simplest
analysis, disregarding the individual pixel hits that accumulate in the input queues and only looking at the
output of the buffer managers. As said, the buffer managers output a random sequence, which can be
represented by a Poisson process. The buffer managers store data in the two input queues that they control,
until they detect that a complete event is in the queue. At that time they issue a “complete event” primitive
that is used by the processing module to start the event processing. This “complete event” sequence can be
modeled by a Poisson process. The BB33 algorithm is seen as an open network of queues, where inputs are
Poisson. The simulation shows that the 5 data mean arrival rates and mean processing times are as specified
by the following table:

Table 2

Pixel Half Plane Event arrival rate (λi)
(ev/clk)

Event service rate
(ev/clk)

ρ

Long Doublet 0.0089 0.0184 0.483
Triplet 0.0089 0.019 0.468
N-1 short doublet 0.0089 0.34 0.026
N short doublet 0.0089 0.33 0.027
N+1 short doublet 0.0089 0.35 0.025

This means that mean number of queued events in the Long Doublet process is

() 4837.09368.0
1

===
−

=
µ
λρ

ρ
ρ whereRE q

where ρ is the utilization factor.

We can estimate the average number of hits in the N-1 bend and N bend queues by multiplying the Average
event size to the result above.

() () () 79.109368.0*11.52* === REEENE qvq
Figure 18 shows the queue sizes of N-1 bend and N bend planes during a simulation run of 750 BCOs.

Figure 18 BB33 queue sizes

--- N-1 bend
--- N bend

PRELIMINARY 09/24/02
__

G.C 19

The average queue sizes after simulating 4410 BCOs are:
N-1 bend: 10.94
N bend: 11.38
These values reasonable close to the calculated. Note that during the first 159 BCO the queues are empty.
This is caused by the transitory in the TS-ordering queues, which adds a deterministic latency of 159
BCOs.

The analysis of the other queues is fairly similar. Figure 19 shows all the queue sizes

Figure 19: BB33 queue sizes 19.a) Bend and Non-bend Input queue sizes. 19.b) Projection queue sizes.

The average queue sizes are summarized in the following table

Table 3

Queue size Mean and σ
Queue Mean σ
N-1 bend 9.527 11.94
N-1 non bend 29.73 25.90
N bend 10.08 12.82
N non bend 30.23 25.70
N+1 bend 26.61 21.74
N+1 non bend 27.99 23.27
N triplet projection bend 18.03 39.32
N-1 projection non bend 0.101 0.562
N projection non bend 0.104 0.570
N+1 projection non bend 0.102 0.555

Although the average queue sizes are relatively small, transitory events may cause high peeks in the queue
size. For instance, the triplet-projection-queue size in Figure 19.b. shows a high peek around BCO 3500.
This is caused by consecutive large events of about 25 tracks each accumulating while the module is
processing also a large event. Since the utilization factor of the module is about 50% the Segment Tracker
recovers fairly quickly.

Four of the BB33 processing modules (i.e. the triplet and the 3 short doublet processors) perform a very
similar task to the Long Doublet processor. The main difference is that in each one of these four processing
modules, one of the queues is the output of a previous processing module in the BB33 algorithm. For
instance the Triplet processor process data from two queues, the input of one of them is the output of the
Long Doublet processor. We are interested in the pdf of this input. We can extend the analysis to the Short

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150
BB33 queue sizes

BCO

N
o

w
or

ds

--- N-1 bend queue
--- N bend queue
--- N+1 bend queue
--- N-1 nonbend queue
--- N nonbend queue

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

200

250

300

350
BB33 queue sizes

BCO

N
o

w
or

ds

--- N+1 nonbend queue
--- N triplet projection queue
--- N-1 nonbend projection queue
--- N nonbend projection queue
--- N+1 nonbend projection queue

PRELIMINARY 09/24/02
__

G.C

Doublets as well. For that, we can take the processing modules in pairs. Each pair can be seen as a network
of queues as shown in Figure 20.

Figur

If the arrival and service distribution functi
with parameters λ1 and µ1 respectively, it c
exponentially distributed with parameter λ1.
Poisson distributed with parameter λ1. This
the justification to why the input to the Trip
service distribution functions of those proces

2.4.2 Analysis of the BB33 queues as

A more detailed analysis of the BB33 queue
queues. The processes can be modeled as “
receives single arrivals but allows “bulks” of
the “bulk” service process only allows “birth
the “death” transitions (i.e. right to left) can
must define

gi = Prob[bulk size is i], then 1
1

=∑∞
=i ig

gi has a “modulation” effect over the distribu

The equilibrium equations for the bulk arriva

1)(
1

1 >+=+ ∑
∞

+=
−− kgppp

ki
kiikk µλµλ

∑
∞

=
=

1
0

i
ii gpp µλ

Figure 21

Using the Z Transform

Processing
module I

Processing λ1 µ

k-2 k-1

µg2
.
.

. . .

µg1 µg1

µgi

λ
20

e 20 Network of queues

ons of the Processing module I are exponentially distributed
an be shown using the Laplace transform that the departure is
 This means that the input to the Processing module II is, also,
property can be applied to the Short Doublets as well. This is
let and Short Doublet processes can be seen as Poisson. If the
ses are exponential, then the queues are M/M/1 queues.

a “bulk” service process

s must look at the full dynamics of the number of hits in the
bulk” service. In the “bulk” service process the input queue
 variable size in the departure. The state transition diagram of
” type of transitions to a neighbor state on the right. However,
be to non-neighboring states. As in the “bulk” arrival case we

tion of the queue size pi.

l system are:

 (*)

Bulk service queuing model

module II

1=λ2

k

λ

µg1

k+1 k+2

µgi

λ

.

.

. . .

µg1 µg1 µg1
µg2

λ λ

PRELIMINARY 09/24/02
__

G.C 21

∑
∞

=
=

1
)(

i

k
i ZpZP

equation (*) becomes

() ()() () 1
1 1

>+=+ ∑ ∑−
∞

=

∞

+=
− kgpZPPZP

k ki

k
kiio zz µλµλ (**)

the last term of equation (**) is a double summation. If we change variables in the inner summation

kijwheregp
k j

k
jkj z −=∑ ∑

∞

=

∞

=
+

1 1
µ

We can work it out swapping the summations and momentarily fixing j. Then, this last term becomes

() fixedjwherepzPggp
k

j

k

k
kkkj

k
jkj z

z
z =∑

−=∑

∞

= =

∞

=
+ ∑

1 01

µµ (***)

combining (**) and (***) the equilibrium equations become

() ()() () 1
1 1

>+=+ ∑ ∑−
∞

=

∞

+=
− kgpZPPZP

k ki

k
kiio zz µλµλ

()() fixedjZPZPZZP
j

k

k
kkko Zpg

Z
p =

−+=−+ ∑

=0
)()()(

µλµλ

Equation (****) can be solved for j=fixed but becomes analytically intractable if we try to solve for all j. j
represents the size of the bulk departing from state k after processing. A good estimation can be achieved
using the average bulk size and solving for a fixed j=Avg bulk size.

The solution to that is shown in the Appendix II. The final equation is,

zz
z

o

oZP
−

−
=

1

11
)(

We can obtain the distribution inverting the last equation

−=

zz
p

o

k

o
k

111 , where Zo is obtained from equation (****).

pk is geometrically distributed. Its mean value is

()
11

1
2

1 −
=

−
=

z
z

z
z

o
o

o

o

NE

PRELIMINARY 09/24/02
__

G.C 22

The simulations show that the 6 data individual data streams are Poisson processes with rates as specified
by the following table

Table 4

Pixel Half Plane Queue arrival rate (λi) (hits/clock)
N-1 non bend 0.1072
N-1 bend 0.1014
N non bend 0.1116
N bend 0.1014
N+1 non bend 0.1133
N+1 bend 0.1023

The superposition of two independent Poisson processes is also a Poisson process with arrival rate equal to
the sum of the individual input rates. The combined arrival rate for stations N-1 bend and N bend at the
input of Long Doublet processing module is 0.2028 hits/clock.

(write results here)

PRELIMINARY 09/24/02
__

G.C 23

2.4.3 Latency and Processing Times

In this section we analyze Processing Times in each stage of the Pixel Preprocessor and Segment Tracker.
The Processing Time of a piece of data or the Service Distribution Time in a Processing module determines
the queue sizes and the utilization factor of each processing stage.

Table 5

Pixel Preprocessor
 Processing Distribution Average Processing Time
Receiver interface deterministic 2 clocks/hit
TS-ordering (queue) deterministic 159 BCOs (4452 clocks!)
TS-ordering (hits) exponential 18.8 clocks/hit
X-Y translation & grouping Rayleigh 1+Nohits/group = 3.2 clk/hit

Segment Tracker
 Processing Distribution Average Processing Time
Long Doublet Rayleigh:

1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query)

54.48 clocks/event

Triplet Rayleigh:
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query)

43.87 clocks/event

Short Doublets Rayleigh:
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query)

3.01 clock/event

We define latency in a specific stage of the Pixel Preprocessor and Segment Tracker modules as the time
between the arrival of the first hit of a particular event to a stage and the time when that event departs from
that stage.

The latency in the Pixel Preprocessor and the Segment Tracker is dominated by the sorting time in the TS-
ordering queues. The TS-ordering process adds a fix 2226 clock cycles to the processing of every queue.
The most delayed hit is the one that arrives first and gives birth to a new queue. Then, other hits with the
same TS join the same queue. We can see the exponential nature of those arrivals in Figure 22. The
highlighted area of the figure shows that the latency added by the rest of the modules in the Pixel Processor
is very small. This latency is represented by the time to the right on the yellow line (i.e. the fix latency line
of the TS-ordering module).

The mean latency times are 172.22 BCOs and 13.22 BCOs respectively, and the Standard Deviation is
4.27.

PRELIMINARY 09/24/02
__

G.C 24

800 1000 1200 1400 1600 1800 2000 2200 2400
0

500

1000

1500

2000

2500

3000
Histogram of Latency in the Pixel Processor

time in clocks (106MHz)

w
or

ds

1900 1950 2000 2050 2100 2150 2200 2250 2300
0

500

1000

1500

2000

2500

3000

Fix time latency
line of the
TS-Ordering
module = 2226
clocks

Figure 22 Distribution of latency in the Pixel Processor and Segment Tracker

2.5 Data Bandwidth Analysis

This section estimates data bandwidths at several points of the Trigger Architecture showed by Figure XX.
Those points are indicated by numbers between parentheses.

PRELIMINARY 09/24/02
__

G.C 25

PTSM

Pixel Preprocessor

Segment Preprocessor

GTSM

Detector

Front End Board (DCB)

L1Buf

L1Buf

Crossing Switch

Pixel Preprocessor
(60 per highway)

Segment Preprocessor
(56 per highway)

DSP Farms

1 Highway

GL1

ITCH

L2/L3

Results & Accepts

PTSM

BTeV Run
Control

GTSM

Muon
<50 bytes Other Front-End

<10bytes

DAQ

Triplet Data
+ DSP
Results

Triplet Data

Raw Pixel hits

<100 bytes - Trigger rate

Min msg - Trigger rate

<50 bytes - Trigger rate

L23SM

L1Buf

Pixel Trigger
Supervisor/monitor

Global Trigger
Supervisor/monitor

(1)

(2)

(3)

(3)+(5)

(6)

(4) Switched Triplet Data

Figure 23

PRELIMINARY 09/24/02
__

G.C 26

The bandwidth calculations assume the following:

• The number of highways in the L1 Trigger System is 8. The Pixel Detector Data Combiner Boards
perform the highway operation.

• A single Pixel hit is represented by 4 Bytes.
• A group of N consecutive Pixel hits generated by a single track are represented by 4*N Bytes.

Although it will, most likely, be implemented using a smaller number of bytes.
• The Time Stamp extension is adds 2 Bytes to the original TS.
• A Segment Tracker Triplet is represented by 16 Bytes.
• There are 56 Segment Trackers per highway. A total of 448 Segment Trackers.
• The total number of Track and Vertex processors needed is ~ 2500
• There are 52 6-DSP-Farmlets per highway. Totalizing 416 Farmlets and 2496 processors.
• The result message from the Farmlet to GL1 is fixed at 50 Bytes in length.

Total bandwidths
 1 Highway 8 Highways
No of BCOs simulated 4410 4410
(1) Raw Pixel Data (in pixel hits) 3.32 Ghits/s 26.6 Ghits/s
(1) Raw Pixel Data (in Bytes) 13.3 GB/s 106.4 GB/s
(2) TS Extended Raw Pixel Data to L1 Buffer 3.32 Ghits/s 26.6 Ghits/s
(2) TS Extended Raw Pixel Data to L1 Buffer 19.95 GB/s 159.6 GB/s
(3) Triplet Data out of Segment Tracker 153.8 Mtriplets/s 1.23 Gtriplets/s
(3) Triplet Data out of Segment Tracker 2.46 GB/s 19.68 GB/s
(4) Triplet Data out of Switch 153.8 Mtriplets/s 1.23 Gtriplets/s
(4) Triplet Data out of Switch 2.46 GB/s 19.68 GB/s
(5) DSP Results to L1 Buffer (in No messages) 0.947 Million/s 7.57Million/s
(5) DSP Results to L1 Buffer (in Bytes) 200 MB/s 1.5 GB/s
(6) DSP Results to GL1 (in No messages) 0.947 Million/s 7.57Million/s
(6) DSP Results to GL1 (in Bytes) 47.4 MB/s 378.5 MB/s

Individual Bandwidths
 Single Link
(1) Half Plane, Highwayed Raw Pixel Data Input to Pixel Processor (in Bytes) 110.87 MB/s
(3) Single Segment Tracker Triplet Data Output 43.94 MB/s
(4) Single Switch output to Farmlet 47.3 MB/s
(5) Single Farmlet to L1 buffer output bandwidth 3.64 MB/s
(6) Single Farmlet to GL1 output bandwidth 0.91 MB/s

Note: The Individual Bandwidth information does not necessarily imply a one to one relationship with a
physical link. Although it may be convenient in some cases.

2.6 Data Throttling

The L1Trigger, and the whole BTeV readout-DAQ system, is "data push”. This concept implies that the
data is pushed forward from one stage to the next without any handshaking mechanism between interfacing
stages. In other words the stage downstream in the readout process must be able to deal with the data that is
being pushed by the previous stage at all times. However, this does not mean that the stages must supply
infinite data queuing or infinite processing bandwidth, but it means that they must deal with eventual
buffering or processing overflows. The way to deal with this problem is by throttling the data stream to
reduce queue sizes and processing load. A well-implemented throttle must handle data inefficiency
gracefully. The data flow analysis and simulations allow us to make some observations about throttling.

PRELIMINARY 09/24/02
__

G.C 27

2.6.1 Instantaneous data rate

The L1 Trigger stages must deal with data rate fluctuations. The L1 Trigger stages will be designed to
handle the average processing capacity calculated plus a safety margin. The buffers or queues will provide
the temporary storage to allow the processors to deal with high data rate fluctuations. The current
simulation of about 5000 events (see Figure XX below) shows for a typical queue maximum-to-average
ratio size of 7 or 8 times. This value is not exaggeratedly large but may increase for longer simulations.

The data set used for the current data flow simulations does not consider many of the spurious effects that
can increment the instantaneous data rate such us Pixel Detector failures and oscillations, etc.

2.6.2 Data Throttling

Every stage of the Pixel Readout and L1 Trigger must implement simple cut mechanisms to detect and
discard events that are not interesting for processing. The benefit is double if many of these spurious events
are also large or require a long processing time. The system must keep record of occurrence of these events.
Eventually, these events must be available for diagnosis.

There will be no feedback signals indicating an upstream stage to throttle data. The stage needing the
throttle must be able to implement its own.

2.6.3 Data Throttling in the Pixel Preprocessor

A typical case of data loss (not necessarily due to high data rate) but causing the same effect is due to data
that arrives late to the TS ordering queues. These data must be discarded for processing. The data can join a
queue of rejected or leftover event pieces. Their occurrence can be reported through the PTSM.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400
Triplet projection queue size

BCO

N
o

w
or

ds

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200
Triplet processing time

BCO

N
o

cl
oc

k
cy

cl
es

PRELIMINARY 09/24/02
__

G.C 28

The Pixel Preprocessor could be able to implement data cuts based on high pixel count, large pixel groups,
number of tracks per event, etc.

2.6.4 Data Throttling in the Segment Tracker

The processing time in the Segment Tracker is proportional to the number of Pixel Hits and the number of
matching point that make a segment. Large events are likely to take longer. The Segment Tracker must be
able to throttle events when queues are full.

2.6.5 Data Throttling in the Processor Farmlet

The Buffer Manager is responsible for data throttling in the Farmlet. Data throttling can be induced by two
factors, an increase in the input data rate or a decrease of the processing capacity of the Farmlet due to a
Processor failure. This topic will be analyzed in particular in a separate document.

3 Conclusions

PRELIMINARY 09/24/02
__

G.C 29

APENDIX I

(pixel front end model)

APENDIX II

(derivation of the “bulk” service equations)

APENDIX III

(Data occupancy in the Pixel Detector)

	1 Some System definitions
	1.1 Introduction
	1.2 The Pixel Detector structure
	1.3 The Input data file:
	1.3.1 Some file statistics
	1.3.2 Front-end bandwidth

	1.4 Pixel Preprocessor and Segment Tracker
	1.5 The Pixel Front end

	2 Data flow analysis in the Pixel Preprocessor and Segment Tracker
	2.1 The Pixel Preprocessor Architecture
	2.2 The Pixel Preprocessor queuing analysis and simulation
	2.2.2 The TS-ordering queues
	2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues

	2.3 The Segment Tracker Architecture
	2.4 Analysis and simulations of the BB33 dataflow
	2.4.1 Analysis of the BB33 queues as events in the buffer manager
	2.4.2 Analysis of the BB33 queues as a “bulk” service process
	2.4.3 Latency and Processing Times

	2.5 Data Bandwidth Analysis
	2.6 Data Throttling
	2.6.1 Instantaneous data rate
	2.6.2 Data Throttling
	2.6.3 Data Throttling in the Pixel Preprocessor
	2.6.4 Data Throttling in the Segment Tracker
	2.6.5 Data Throttling in the Processor Farmlet

	3 Conclusions

